A new method to overall immobilization of phosphorus in sediments through combined application of capping and oxidizing agents

通過封蓋劑和氧化劑的聯(lián)合應(yīng)用,全面固定沉積物中磷的新方法

來源:Science of the Total Environment 694 (2019) 133770

 

論文摘要

本研究開發(fā)了一種新型的協(xié)同固定技術(shù),通過結(jié)合應(yīng)用覆蓋劑(鑭改性膨潤(rùn)土,LMB) 和氧化劑(硝酸鈣,CN),實(shí)現(xiàn)對(duì)沉積物中磷(P)的整體性固定。LMB被撒布于沉積物表面以抑制表層P的釋放,而CN則被注入深層沉積物(~5 cm)以固定深部活性P。研究采用高分辨率采樣技術(shù)(如薄膜擴(kuò)散梯度技術(shù)DGT、高分辨率透析HR-Peeper和丹麥Unisense微電極系統(tǒng)),原位監(jiān)測(cè)了沉積物-水界面(SWI)處溶解性/活性氮、磷、硫、鐵等參數(shù)的微尺度變化。結(jié)果表明,LMB+CN聯(lián)合處理相比單獨(dú)處理(LMB或CN)具有顯著優(yōu)勢(shì):上覆水中可溶性反應(yīng)磷(SRP)濃度降至極低水平(僅為對(duì)照的4%),且固定效果從SWI延伸至沉積物60 mm深度,遠(yuǎn)優(yōu)于LMB單獨(dú)處理(僅20 mm)。聯(lián)合處理還有效調(diào)控了孔隙水中的氨氮、鐵和硫化物濃度,證實(shí)了其在控制內(nèi)源P釋放方面的協(xié)同增效作用。

 

研究目的

 

開發(fā)協(xié)同固定策略:克服單一材料(LMB僅作用表層、CN可能擾動(dòng)沉積物)的局限,通過LMB(表面覆蓋)與CN(深層氧化)的協(xié)同,實(shí)現(xiàn)對(duì)沉積物全剖面磷的穩(wěn)定固定。

評(píng)估處理效果與機(jī)制:定量比較單獨(dú)與聯(lián)合處理對(duì)上覆水及孔隙水中磷濃度的抑制效果,并探究其背后涉及的關(guān)鍵生物地球化學(xué)過程(如硝化-反硝化、鐵硫循環(huán))。

揭示微觀分布規(guī)律:利用高分辨率技術(shù)(DGT、HR-Peeper、微電極)刻畫磷及相關(guān)元素(Fe、S、N)在沉積物剖面的毫米級(jí)/亞毫米級(jí)分布動(dòng)態(tài),闡明固定作用的深度范圍與時(shí)空演化。

 

為工程應(yīng)用提供依據(jù):驗(yàn)證聯(lián)合技術(shù)在低劑量下實(shí)現(xiàn)高效、持久磷固定的可行性,為富營(yíng)養(yǎng)化湖泊內(nèi)源污染治理提供新方法。

 

研究思路

研究遵循“處理設(shè)置-高分辨監(jiān)測(cè)-多參數(shù)關(guān)聯(lián)-機(jī)制解析”的系統(tǒng)思路:

 

實(shí)驗(yàn)設(shè)計(jì):設(shè)置4個(gè)處理組——對(duì)照組(CK)、LMB單獨(dú)處理、CN單獨(dú)處理、LMB+CN聯(lián)合處理,進(jìn)行為期68天的沉積物柱狀培養(yǎng)實(shí)驗(yàn)。LMB按120 LMB/Pmobile(摩爾比)撒布表面,CN以45.3 g N/m2劑量注入沉積物5 cm深處。

原位高分辨率監(jiān)測(cè):

 

使用DGT技術(shù)(ZrO-DGT用于P、AgI-DGT用于S、ZrO-Chelex DGT用于Fe)獲取活性P、S、Fe的二維通量或濃度剖面。

使用HR-Peeper采集孔隙水,分析SRP、氮形態(tài)等溶解態(tài)成分。

 

使用丹麥Unisense微電極系統(tǒng)在培養(yǎng)第67天原位測(cè)量沉積物剖面的pH和氧化還原電位(Eh)(數(shù)據(jù)見圖3),以表征處理后的微環(huán)境化學(xué)狀態(tài)。

 

常規(guī)參數(shù)監(jiān)測(cè):定期測(cè)定上覆水的pH、溶解氧(DO)、電導(dǎo)率(圖2),以及孔隙水中的硝酸鹽、氨氮、鐵等濃度(圖4,6,7)。

 

 

 

 

 

數(shù)據(jù)整合與分析:對(duì)比不同處理下各參數(shù)的垂向分布時(shí)序變化,計(jì)算元素通量,通過統(tǒng)計(jì)檢驗(yàn)評(píng)估處理效果顯著性,并基于化學(xué)熱力學(xué)和動(dòng)力學(xué)解析協(xié)同機(jī)制。

 

測(cè)量數(shù)據(jù)及其研究意義(注明來源)

研究測(cè)量了多維度數(shù)據(jù),其意義和來源如下:

 

沉積物外觀變化:

 

意義:直觀顯示CN注入后沉積物氧化層的形成與擴(kuò)展。聯(lián)合處理下,淺黃色氧化層厚度增加至70 mm(圖1),表明CN有效氧化了深層還原性物質(zhì),為P固定創(chuàng)造了氧化環(huán)境。

 

來源:數(shù)據(jù)見圖1。

 

上覆水理化參數(shù)(pH、DO、電導(dǎo)率):

 

意義:反映處理對(duì)水體整體化學(xué)環(huán)境的影響。聯(lián)合處理后期(第44天)上覆水pH顯著低于LMB處理(圖2A),電導(dǎo)率升高(圖2C),指示CN添加引入了離子并可能促進(jìn)微生物活動(dòng);DO變化不顯著(圖2B),說明處理未造成嚴(yán)重耗氧。

 

來源:數(shù)據(jù)見圖2。

 

沉積物剖面pH與Eh微環(huán)境:

 

意義:由丹麥Unisense微電極測(cè)量,直接揭示處理對(duì)沉積物微區(qū)氧化還原梯度的調(diào)控。聯(lián)合處理在-2至-19 mm深度顯著降低pH和大幅提高Eh(圖3),證明其有效創(chuàng)造了更廣泛、更強(qiáng)烈的氧化條件,抑制Fe/Mn還原和P釋放。

 

來源:數(shù)據(jù)見圖3。

 

氮?jiǎng)討B(tài)(硝酸鹽、氨氮):

 

意義:CN添加后孔隙水NO?-N濃度驟升(圖4),隨后被逐漸消耗,證實(shí)硝酸鹽作為電子受體驅(qū)動(dòng)了反硝化等過程。氨氮濃度短期升高后恢復(fù)(圖6),表明處理可能刺激有機(jī)氮礦化但最終被硝化作用消耗,避免長(zhǎng)期富集。

 

來源:數(shù)據(jù)見圖4(NO?-N)和圖6(NH??-N)。

 

鐵與硫的循環(huán):

 

意義:活性Fe(圖7,8)和S(-II)(圖9)的變化揭示了P固定的關(guān)鍵耦合機(jī)制。CN氧化導(dǎo)致活性S(-II)通量驟降(圖9),減少FeS形成,同時(shí)促進(jìn)Fe(II)氧化為Fe(OOH)(活性Fe降低,圖8),增強(qiáng)對(duì)P的吸附固定。

 

 

來源:溶解Fe見圖7;DGT活性Fe通量見圖8;DGT活性S(-II)通量見圖9。

 

磷固定效果核心數(shù)據(jù):

 

孔隙水SRP濃度:聯(lián)合處理下SRP濃度始終低于其他組,尤其在SWI處(圖10,11),表明協(xié)同作用強(qiáng)效抑制P釋放。

DGT活性P通量:聯(lián)合處理使活性P通量在0至-80 mm深度顯著降低(圖12),平均通量在表層(0-20 mm)降至11.26 pg/cm2/s(表1),固定深度達(dá)60 mm,遠(yuǎn)超LMB單獨(dú)處理(20 mm)。

 

 

 

 

來源:SRP濃度見圖10,11;DGT活性P通量見圖12及表1。

 

研究結(jié)論

 

協(xié)同處理優(yōu)勢(shì)顯著:LMB+CN聯(lián)合處理綜合了LMB的表面屏障作用與CN的深層氧化優(yōu)勢(shì),實(shí)現(xiàn)了對(duì)沉積物全剖面(0-60 mm)磷的高效固定,且對(duì)上覆水SRP的抑制效果最佳(僅為對(duì)照的4%)。

微環(huán)境氧化增強(qiáng):CN的添加顯著提升了沉積物剖面的Eh值,創(chuàng)造了更廣泛的氧化帶,有效抑制了Fe/Mn還原和硫化物生成,促進(jìn)了磷的吸附固定。

元素循環(huán)耦合:處理通過硝化-反硝化作用消耗硝酸鹽,同時(shí)氧化硫化物(S(-II)),減少了FeS的形成,使更多的鐵以氧化物形式存在并固定磷;氨氮的短暫升高后恢復(fù)表明系統(tǒng)氮循環(huán)未被破壞。

 

技術(shù)應(yīng)用前景廣闊:聯(lián)合技術(shù)在較低劑量下實(shí)現(xiàn)了深度固定,避免了單一材料過量使用的潛在風(fēng)險(xiǎn),為湖泊內(nèi)源磷污染控制提供了一種高效、可持續(xù)的工程解決方案。

 

使用丹麥Unisense電極測(cè)量數(shù)據(jù)的研究意義詳細(xì)解讀

在本研究中,丹麥Unisense公司的微電極系統(tǒng)被用于培養(yǎng)第67天時(shí),對(duì)沉積物-水剖面進(jìn)行原位、高分辨率的pH和氧化還原電位(Eh) 測(cè)量(方法部分2.2,結(jié)果部分3.2,數(shù)據(jù)見圖3)。

詳細(xì)研究意義如下:

 

提供關(guān)鍵微環(huán)境證據(jù),直接證實(shí)氧化機(jī)制的生效:Unisense微電極以亞毫米級(jí)分辨率測(cè)量的Eh剖面顯示,CN單獨(dú)處理及LMB+CN聯(lián)合處理在沉積物0至-30 mm深度范圍內(nèi),Eh值均顯著高于對(duì)照組(圖3右下)。這一數(shù)據(jù)提供了最直接的證據(jù),證明硝酸鈣的注入確實(shí)在沉積物中創(chuàng)造并維持了一個(gè)強(qiáng)氧化環(huán)境。這種高Eh條件抑制了硫酸鹽還原菌的活性(解釋了S(-II)通量降低,圖9),并促進(jìn)了Fe(II)向Fe(III)氧化物的轉(zhuǎn)化(與活性Fe降低吻合,圖8),從而為磷的化學(xué)吸附提供了更多的活性位點(diǎn)。沒有Unisense提供的Eh梯度數(shù)據(jù),CN的“氧化劑”角色將缺乏原位實(shí)證。

量化處理效果的空間范圍,揭示協(xié)同作用的深度優(yōu)勢(shì):Eh剖面清晰顯示,聯(lián)合處理對(duì)氧化環(huán)境的改善范圍覆蓋了從界面至約-30 mm的深度(圖3)。這恰好與DGT測(cè)得的磷固定有效深度(可達(dá)-60 mm,圖12)相呼應(yīng)。這表明CN的氧化作用不僅發(fā)生在注入點(diǎn)附近,其效應(yīng)還能通過擴(kuò)散和反應(yīng)向上遷移至更淺層,與表層的LMB覆蓋層形成“上下夾擊”之勢(shì),共同封堵了磷從深層遷移至界面的路徑。Unisense數(shù)據(jù)使協(xié)同作用的空間協(xié)同性得以量化。

關(guān)聯(lián)pH變化,指示微生物活動(dòng)與化學(xué)平衡:同步測(cè)量的pH剖面顯示,聯(lián)合處理在-8.5至-15.5 mm深度pH顯著低于CN單獨(dú)處理(圖3左上)。這種pH下降可能源于硝化作用(NH?? → NO??,產(chǎn)H?)或反硝化過程(中間產(chǎn)物可能酸化微環(huán)境)的增強(qiáng),間接證實(shí)了CN添加強(qiáng)烈刺激了沉積物中的氮循環(huán)微生物活動(dòng)。這些微生物過程消耗了電子供體(有機(jī)質(zhì)),進(jìn)一步穩(wěn)定了氧化環(huán)境,間接助力于磷的固定。

 

技術(shù)優(yōu)勢(shì)保障數(shù)據(jù)可靠性,支撐機(jī)制推斷:Unisense微電極的原位、實(shí)時(shí)測(cè)量避免了采樣過程中氧氣侵入對(duì)脆弱氧化還原梯度的破壞,獲得的Eh/pH數(shù)據(jù)真實(shí)反映了處理后的沉積物化學(xué)狀態(tài)。其高空間分辨率使得能夠精確界定氧化前沿的位置,這是傳統(tǒng)剖面取樣方法無法實(shí)現(xiàn)的。這些高質(zhì)量的原位數(shù)據(jù)為“CN通過創(chuàng)造氧化環(huán)境固定磷”這一核心機(jī)制提供了堅(jiān)實(shí)、無可辯駁的實(shí)驗(yàn)證據(jù),極大地增強(qiáng)了研究結(jié)論的可靠性。

 

綜上所述,丹麥Unisense微電極獲得的pH和Eh數(shù)據(jù)遠(yuǎn)非簡(jiǎn)單的參數(shù)記錄,它們是解碼LMB+CN協(xié)同固磷機(jī)制的“鑰匙”。通過提供高保真、高分辨率的原位氧化還原化學(xué)影像,該技術(shù)直觀地揭示了聯(lián)合處理如何從化學(xué)本質(zhì)上改變沉積物微環(huán)境,并精準(zhǔn)量化了其影響深度,最終有力支撐了“氧化-吸附協(xié)同”是聯(lián)合技術(shù)高效固磷根本原因這一核心論點(diǎn)。